Structural, vibrational and thermodynamic properties of carbon allotropes from first-principles: diamond, graphite, and nanotubes

نویسندگان

  • Nicolas Mounet
  • Nicola Marzari
چکیده

The structural, dynamical, and thermodynamic properties of different carbon allotropes are computed using a combination of ab-initio methods: density-functional theory for total-energy calculations and density-functional perturbation theory for lattice dynamics. For diamond, graphite, graphene, and armchair or zigzag singlewalled nanotubes we first calculate the ground-state properties: lattice parameters, elastic constants and phonon dispersions and density of states. Very good agreement with available experimental data is found for all these, with the exception of the c/a ratio in graphite and the associated elastic constants and phonon dispersions. Agree:ment with experiments is recovered once the experimental c/a is chosen for the calculations. Results for carbon nanotubes confirm and expand available, but scarce, experimental data. The vibrational free energy and the thermal expansion, the temperature dependence of the elastic moduli and the specific heat are calculated using the quasi-harmonic approximation. Graphite shows a distinctive in-plane negative thermal-expansion coefficient that reaches its lowest value around room temperature, in very good agreement with experiments. The predicted value for the thermal-contraction coefficient of narrow single-walled nanotubes is half that of graphite, while for graphene it is found to be three times as large. In the case of graphene and graphite, the ZA bending acoustic modes are shown to be responsible for the contraction, in a direct manifestation of the membrane effect predicted by I. M. Lifshitz over fifty years ago. Stacking directly hinders the ZA modes, explaining the large numerical difference between the thermal-contraction coefficients in graphite and graphene, notwithstanding their common physical origin. For the narrow nanotubes studied, both the TA bending and the "pinch" modes play a dominant role. For larger single-walled nanotubes, it is postulated that the radial breathing mode will have the! most significant effect on the thermal contraction, ultimately reaching the graphene limit as the diameter is increased.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Body-centered tetragonal C4: a viable sp3 carbon allotrope.

We have investigated by first principles the electronic, vibrational, and structural properties of bct C4, a new form of crystalline sp{3} carbon recently found in molecular dynamics simulations of carbon nanotubes under pressure. This phase is transparent, dynamically stable at zero pressure, and more stable than graphite beyond 18.6 GPa. Coexistence of bct C4 with M carbon can explain better ...

متن کامل

The era of carbon allotropes.

Carbon is the element in the periodic table that provides the basis for life on Earth. It is also important for many technological applications, ranging from drugs to synthetic materials. This role is a consequence of carbon’s ability to bind to itself and to nearly all elements in almost limitless variety. The resulting structural diversity of organic compounds and molecules is accompanied by ...

متن کامل

Graphene : carbon in two dimensions

Carbon is one of the most intriguing elements in the Periodic Table. It forms many allotropes, some known from ancient times (diamond and graphite) and some discovered 10-20 years ago (fullerenes and nanotubes). Interestingly, the two-dimensional form (graphene) was only obtained very recently, immediately attracting a great deal of attention. Electrons in graphene, obeying a linear dispersion ...

متن کامل

A new phase transformation path from nanodiamond to new-diamond via an intermediate carbon onion.

The investigation of carbon allotropes such as graphite, diamond, fullerenes, nanotubes and carbon onions and mechanisms that underlie their mutual phase transformation is a long-standing problem of great fundamental importance. New diamond (n-diamond) is a novel metastable phase of carbon with a face-centered cubic structure; it is called "new diamond" because many reflections in its electron ...

متن کامل

Carbyne with finite length: The one-dimensional sp carbon

Carbyne is the one-dimensional allotrope of carbon composed of sp-hybridized carbon atoms. Definitive evidence for carbyne has remained elusive despite its synthesis and preparation in the laboratory. Given the remarkable technological breakthroughs offered by other allotropes of carbon, including diamond, graphite, fullerenes, carbon nanotubes, and graphene, interest in carbyne and its unusual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006